N -3 7
453376

NASA Contractor Report 187133 (./
f= 1

Elasto-Plastic Analysis of Interface
Layers for Fiber Reinforced Metal
Matrix Composites

I. Doghri and F.A. Leckie
University of California
Santa Barbara, California

June 1991

Prepared for
Lewis Research Center
Under Grant NAG3-894

NNASAN

National Aeronautics and
Space Administration

(?‘MSA-CQ—IB?I“‘S}) ELASTU—DLA3TI>—C ANM:YSTS QF
INTFREACE LAYERS FOR FIRER REINFORCEU METAL

; ASTTES Final Raport (California
MATRIX COMP STTES ? CSCL 20K Unclas
Jniv.) b G3/39 0053336

N92-13462







ELASTO-PLASTIC ANALYSIS OF INTERFACE LAYERS FOR
FIBER REINFORCED METAL MATRIX COMPOSITES
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ABSTRACT

The mismatch in coefficients of thermal expansion (CTE) of fiber and matrix in metal
matrix composites reinforced with ceramics fibers induces high thermal stresses in the
marmix. Elasto-plastic analyses - with different degrees of simplification and modelizaton -
show that an interface layer with a sufficiently high CTE can reduce the tensile hoop stress

in the matrix substantially.



INTRODUCTION

Metal matrix composites reinforced with ceramics fibers have attractive properties for
engineering applications. These composites have a high strength associated to a low
density, the ceramics fibers provide a high temperature resistance, and their brittle behavior
is compensated to some extent by the ductility of the metal matrix. However, because
ceramics have a low coefficient of thermal expansion (CTE) and metals have a higher CTE,
the induced thermal mismatch is responsible for residual swesses in the composite when
subjected to a change in temperature.

Cracking in the matrix has been observed after cooling down from processing
temperature to room temperature for brittle matrix materials [1]. It has been proposed that
the insertion of an adequate interface layer berween the fiber and the matrix can reduce the
tensile stresses in the matrix to a level which avoids matrix cracking.

Some numerical parametric studies ([2], [3]) suggested that the optimum interface
layer should have a CTE between those of the matrix and fiber, with a low Young's
modulus and a high thickness. However, these conclusions were based on a questionable
optimization procedure [2] or on limited numerical results and did not provide an
understanding of the problem.

Recently, Jansson and Leckie [4] conducted a simplified analysis assuming a rigid
fiber and a very thin layer. They concluded that a compensating layer with a sufficiently

high CTE can reduce significantly the residual stresses in the matrix. A complete elastic

~ analysis was performed by Doghri et al [5], who proposed an optimization procedure

offering a window of candidate layer materials. Both of the two studies showed that, while

the hoop stress in the marrix can be reduced substantially, the axial stress in the mamix is

less affected by a layer. They also pointed out that plastic yielding may occur in the
interface layer.

In this paper, plasticity is taken into account. The first part of the study is based on a
three cylinder model, isolating one fiber with an interface layer and a matrix layer (Fig. 1).

Only thermal loading is considered. The interface layer is elastic-perfectly plastic while the



matrix is considered either elastic or elasto-plastic. A remarkably accurate and efficient
numcricél procedure is developed allowing to have approximarions of the stresses and
strains fields everywhere in the composite.

In the second part of this study, the accuracy of the three cylinder model is
investigated by studying the response of a unit cell of a hexagonal array of the fibrous

composite. Finite element computations are performed under seveal thermal-mechanical

loadings.



NOTATIONS

f fiber

¢ layer

m matrix

i f4m

Rj external radius of j

ty = Ry-Rylayer thickness

The radii Rfand R are related to the fiber volume fraction Cg by Cg = (T;R-L]z
m

Ej,Vj Young's modulus, Poisson’s ratio of j

Aj 1 Lamé coefficients of j

i 2vpirvy T EJV—J)
o CTE of

AT change in temperature

Orj radial stress () in j

Ogj hoop stress (Cgg) in j

Oz axial stress (Oz2) in j

In the same manner, we define the total strains: €rj, €gj, €zj

and the plastic strains in the layer €5,,€§,. €2,

Oj

In the same way that the v. Mises equivalent stress is related to the distorsion energy, a so-

v. Mises equivalent stress in j

called damage equivalent szess [6] is related to the total elastic energy and is defined by
2172

]

-2 Oyi
0; =0 ;(l+vj)+3(l—2vj)[—%}

where oyj = (Grj + Ogj + Ozj)/3.



The composite is not subjected to wransverse loading and the outer surface of the
compound cylinder is traction free. The thermal loadi;xg is assumed to be axisymmetric
with respect to the z-axis, so that the displacement in the transverse plane is radial: Uj(@).
~ The fibers are long and the strain and stress distributions are uniform in the z-direction
except at the end regions which are not studied here. A generalized plané strain assumpton
is made so that €z = constant =¢z. The other strains are given by:

U.

= U’ =]
€= Ujand gg; =

r
and there are no shear strains.

One may use the finite element method (FEM) to solve this problem. But the problem
begin axisymmetric, we developed a procedure which proved to be more flexible and much
less computer time consuming than the FEM. The interface layer is assumed to be elasto-
plastic while the fiber and the martrix are elastic.

We are looking for a solution which will satisfy the following conditions:

(1) The constitutive equations everywhere

(2) Exactly the equilibrium in (f) and (m)

(3) The condnuity of the displacement between (f) and (¢) Ug=Upatr =Rg

(4) The continuity of the displacement between (¢) and (m) Uy = U atr =Ry

(5) The stress free condition at the outer surface of the copound cylinder Gy = 0 at
r=Rp

(6) A weak form of the equilibrium in ()

(7) The axial equilibrium condition associated with the generalized plane strain

R
assumption fﬂozjrd: =0
0



This solution will not satisfy the continuity of the stress vector at the interfaces (£)/(¢) and

(£)/(m). However, it was found that the resulting jumps are not important. The iterative

procedure adopted is the following:
(i) Propose a temperature increment AT
(ii) For the given temperature increment, propose a total strain increment in
0
- Find stresses in (£) which satisfy the constitutive equations
- Find strains and stresses in (f) and (m) which satisfy the conditions
(1), (2), (3), (4) and (5)
- Check if the equilibrium equations (6) and (7) are satisfied:
+ If NO, propose another strain increment in (£), i.e. go to (ii)

« If YES, for this temperature, the solution was found.

1.1 Equilibrium Condisions (6) and (7'

Any form of the total strain field in (£) may be assumed, provided that the
compatibility conditions are satisfied. For example, the following form of the total strains

in (&) is assumed

2
R
= ‘(—,LJ D,

where ¢y and D, are constants 1o be found.

We have used the present form of the total strain field in (¢) because it has a uniform
trace, hence the stress field has a uniform trace also and since €,y = constant = e, the stress
Oy are likely to bcralmost uniform, which is in agreement with a generalized plane strain

assumption.



The radial displacement is given as

The local equations of equilibrium in the layer are

ac_ |
a,rr + F(Grr - 096) =0
We use the same procedure by which the local equations of equilibrium are cxtcndéd to the
global ones. We multiply the local equations by Uy and integrate over the domain of (¢) to
give:

R 2
tfde_ | R
Rj{_arﬂ+;(on—cee)][ctr+Dl—;iJrdr=0. Ve, VD,
f

This is a weak form of the equilibrium because we assume only a particular form of the
displacement field.

The previous equation leads to the following system

R, dc
2
Rj [l’ —aT"+r(crr—cee)Jdr =0
£
R, oG R2
2 4 —
Rj {R( arn+T(°"'°99) dr=0

By partial integration this system becomes



Re 2 Re
-] r(o"+cee)d:+[r cn] =0
Ry R¢

R 2
lRl

J ""("rr - °9e)d‘ + R%["n]::: =0

This system represents the equilibrium condition (6). To this system we add the
equilibrium condition in the z-direction, i.e. equation (7). Since Gzfand Gz are constant,

we obtain:

R 2 2 2
¢ R R R
/4 =
ij G, rdr+ —zﬂozf +(_5rn - '{}sz =0

We now define the following matrix notations, which are suitable for numerical analysis.

e,] [1 -®/0? 0],
le,}=eq|=|t ®R,/0* 0D, =(Ble]
<, 0 0 lfe

z

The systemn of 3 equations of equilibrium can be rewritten as:



R, R{04(Rp)-R2o (R
(F@)= ] [B]T{o,}rdn RZc (R.)-RjG_.(R,) | = (0)

R 2 2 2
f &o’ + :Rﬂ_.R_‘.c
2 402 2 lmj

where the upper index T denotes the transposition.

The stresses {0y} are implicit function of {e} and the stresses Oy, Of, O and Osm
are explicit functions of {e}. Then, the last system is nonlinear system of 3 equations and
3 unknowns which are th;: components of {e}. This method looks like a FEM with only 3
DOEF (degrees of freedom), which makes it a particularly efficient tool.

We introduce the following matrix notations:

r 2
R
Uz r =L Orcl
. r
{uj=l0o|=lo 0 o|D,|=(Nle)
ze, 0 O zheZ
-6 _(R,) 6(R,) 0
{Ff}= 0 ’ {Fm = 0 ’ {Fz}= 2 % 2
0 0 Rf (Rm Rl]
—_—F | ——————
2 #7120 2 ['mm

where (F¢} and {Fy, } designate the external surface forces applied to the layer due to its

contact with the fiber and the matrix.

With these notations, the equilibrium equations can be rewritten again as:



{F(e)} = R;’ (B]"{o, rdr - RINROIT{F }-RINRIT{F, } + [F}=0
R¢

It is easily shown that gther forms of the strains in (¢) can be assumed. with the

corresponding expressions of [B] and [N] being substituted into the last equation.

1.2 lterative 2 : nation of the Total Smain I in the

Keeping the previous notations, we have (Ag;} = [B]{Ae).

- For the starting iteration, {Ae} = {0} is proposed.
- If the solution found in (f), (£) and (m) does not satisfy the equilibrium

equations, the Newton method is used in order to propose another approximation for {Ae}:
aff}
F@))+|=—1{C.)=1(0
(F(e)} [ae (Cel = (0)
where {C,} means a "correction” to {Ae] and

R,
[%—f-} | (BIT[H](Brdr +[h*]
©J Ry o

where [H] is the "tangent” modulus in each point of (). If perfect plasticity associated
with a von Mises yield surface is considered, and if the material properties are assumed not
to chgngc with tcmp;craturc then the "continuum” expression of the tenSoxj H during plastic
yicldiné is

3u ‘

_ _re D D
H-Ee 02 °:®°z
yd

10



where Eis the Hooke's operator in (¢) and 0? is the deviatoric stress tensor in ().
The details of the computation of the matrix [h*] are given in Appendix A. This

matrix takes into account the fact that the external lodds applied to () are not given

constant, but depend on {e}.

1.3 Stresses in the Laver

Once {Ae] is given, one knows {Agy) everywhere in (£). The stresses (and the
plastic strains) are then computed by integrating the constitutive equations. The method
used is an elastic predictor/plastic correction one. A fully implicit scheme is adopted and
the nonlinear equations are solved by a Newton method. It was shown recently that the
general procedure presented in [7] becomes particularly simple and efficient: no linear
system is solved iteratively, the corrections being found explicitly [8]. The details are not

given here.

2.  Numercal Results of the Axisymmetric Thermal Problem
The elastic studies performed by Jansson and Leckie [4] and Doghri et al. [5] proved

that a compensating interface layer with a sufficiently high CTE can reduce significantly the
residual stresses in the matrix. They also show that the hoop stress in the matrix can be
reduced substantially but the axial stress in the matrix is less affected by a layer. These
studies pointed out that the stresses in the layer can be high enough to induce plastic
yielding.

In this section, we will study the effect of a plastic layer on the previous elastic
results. The numerical results given in sections 2.1, 2.2 and 2.3 were found using the
method developed in Section 1. -

The fiber and the mawix are defined by the following data:

- Fiber: SiC (SCS6)

Ef = 360 GPa, vf = 0.17, g = 4.9 x 10-6/°C, Rg =70 um
- Marmix: Ti3Al
Em =75.2 GPa, vy = 0.25, oy = 11.7 x 10°6/°C, 6y = 380 MPa,

11



Rp = 110um

The radii Rf and Ryp are related to the fiber volume fraction by

R 2
C {E") = 40.5%

f
m

A practical optimization procedure is proposed in [5] offering a window of candidate layer

since matrix stresses are considerably reduced.

- The propoerties of an Ag layer and the chosen thickness are
E¢ =71 GPa, v = 0.30, 0y =25.9 x 10-6/°C, 64 = 100 MPa, t = 10um

The temperature dependence of the materials properties will be taken into account in Section

24.

2.1 Monoton lin

A monotonous cooling corresponding to a change in temperature of AT = -800°C was
performed with the data above. The final values of stresses and strains at the inner radii are
given in Tables | and 2, respectively.

As in [5] a reference elastic case, corresponding to a 2 cylinder model (fiber and
matrix, without layer) is used to measure the changes induced by the interface layer.

Analyzing the results, the following observatons can be made.

- Plasticity in the layer results in a small increase (less than 10%) of the max. Mises
stress or damage stress in the matrix by comparison to the elastic layer case. This explains

why the reductions in these smesses are still important:

12



Im = 0.50 if (¢) is elastic and 2™ = 0.55 if (¢) is plastic
omf Oref

The reduction in the max. hoop stress in the matrix is even more important:

(o (o]
—8m_ =037 if (£) is elastic and —2M = 0.22 if (¢) is plastic
Cores Soref

- When the layer is added, all the stresses in the matrix are reduced, but one notices

that:

- Without the layer, the max. tensile stress in the matrix is the hoop stress

(o]
[—m- =0 84]
0'em

- With the layer, the axial stress in the matrix exceeds the max hoop stress and

this trend is accentuated when plasticity in the layer is taken into account:

o o}
=0 = 1,79 if (£) is elastic and —&2 = 3.46 if () is plastic
om Com

- Since the stresses in () are reduced when plastic yielding is considered, there
must be an increase in smresses elsewhere. We see that the stresses in (f) decrease and that
Orm and Ogm decrease, then it is to be expected that Oy, increases, by comparison with the
elastic layer situation.

- One observes that vhen the layer is added, the matrix does not yield. So the
assumption which was made at the beginning of this part of the study (elastic matrix) is
legitimate.

- We have mentioned at the beginning of Section 1 that our solution does not

verify the continuity of the stress vector at the interfaces (f)/(£) and (¢{)/(m). But the

13



following results show that the jumps in Gy are not too important.

o, R)=-362TMPa |0 (R,)=-30.41MPa

- Table 2 gives the strains in (f), (£) and (m). It can be noticed that even when
(0 is considered elastic only, the strains in (£) are important (due to high thermal strains).
When we consider plasticity in (£) the trend becomes accentuated (because the stresses in

(&) are reduced).

2.2 Sensitivity Study

Under a monotonous cooling of AT = -800°C, the influence of two layer parameters

was studied.

a) The effect of the variation of the layer thickness was considered, all the other
parameters being kept constant. The two cases: () elastic and (£) plastic were studied.
t
Figure 2 shows that if ﬁi < 0.11, the two cases give the same values of the max.
f

t
Mises stress in the matrix. If RA > 0.11 then for a given thickness, the max. Mises stress
f
in the matrix is higher when the layer is plastic.

Best reducdons in the max. Mises stress are:

t
0.5 when (¢) is plastic, and it is obtained for EL =0.16
f

. t
ref 0.4 when () is elastic, and it is obtained for EL =0.23
f

al IE'QI
n

The same conclusions apply for the damage equivalent stress.

14



b)  The effect of the variation of the layer yield stress was considered, all the other
parameters being kept constant. Since Mises stress = yield stress in (£) (perfect plasticity),
one knows that if 0y increases then the stresses in (¢) increase and one expects that this
may reduce the stresses in the matrix. But Fig. 3 shows that the value of Oy¢ does not
affect the Mises stress in the matrix. However, this result leads to another interesting
prediction: if the temperature dependence of properties is taken into account, plasticity in
the layer will indeed occur sooner (since Gy ¢ will be smaller) but the matrix will not yield

and the results will not change too much. This will be checked in Section 2.4.

2.3 Themmal Cycling

To gain a preliminary idea on how the composite behaves under thermal cycling, a
linear temperature history (ranging between T1 = 825°C and Ty = 25°C) has been
considered. The results of only 3 cycles will be presented because it was found that the
composite has almost shaken down after 3 cycles for the given temperature amplitude. A
more complete study of the shakedown of the composite will be presented in Section 3.3.
The materials data are those given at the beginning of Secton 2.

The mechanical strain is defined by:

Sij=lifi=jand

MEC _
G STy | 5 S0t
1j J

ij

Figure 4a shows that during all the loading history the axial stress in the matrix exceeds the
max hoop stress and is equal to the max Mises stress. Both the axial stress and max hoop
stress remain tensile during the cycles. It can be seen from Fig. 4b that the axial
mechanical strain in the matrix also exceeds the max hoop mechanical strain, but their
values remain small.

Figure 5a shows the stress-strain response in the tangential direction at the inner
radius of the interface layer. It was found that the values of the hoop stress and axial stress

in the layer are almost identical. Figure 5b shows that the axial mechanical strain and the

15



hoop mechanical strain have almost the same values also.

2.4 Temperature Dependence of the Materials Propertics

In this part of the study, the temperature dependence of the materials properties is
taken into account.

The following materials were considered:

Fiber: SCS6, Matrix: TijAl and Layer: Ag

The materials parameters were compiled from Ref. [9] to [13]. The fiber is elastic and the
layer and the matrix are assumned to be elastic-perfectly plastic. The data are given in Figs.
6a-d.

The finite element package ABAQUS [14] was used. The F.E. mesh used for the 3
More details about the boundary conditions and the modelization are given in Appendix B.

A monotonous uniform cooling AT = -800°C was applied in each of the two cases: 2
cylinder model (reference case) and 3 cylinder model. Let us recall that in the previous
sections, the reference case was considered to be elastic. The final values of stresses and
strains at the inner radii of each material are given in Tables 3 and 4. These results show
that.

- in the reference case (fiber and matrix) the matrix yields. The addition of the
layer avoids yielding in the matrix.

- the layer does reduce the hoop stress in the matrix, and this reduction 1is
important Zom. =0.23.

Cores
It is remarkable to notice that the reduction in the hoop stress (with the same value) as

well as the fact that the axial stress in the matrix exceeds the max hoop stress were
observed in the previous part of this study when the temperature dependence of the
materials properties has not been taken into account. One also notices that the values of the
strains are almost identical to those obtained in the previous part. We may conclude that,

from a qualitative point of view, taking into account the plasticity in the layer is more

16



important than the temperature dependence of the materials properties.
Figure 8a shows that the addition of the interface layer reduces the max Mises in the
matrix and avoids plasticity to occur in the matrix. Fig: 8b shows that the interface layer

can reduce dramatically the max hoop stress in the matrix, while the axial stress in the

matrix is increased:

The manufacture and testing of composite materials is demanding in time and effort
so that there is special need for procedures which can help determine the macroscopic
properties of the materials from the properties of the constituents. Success in this endeavor
would mean that prediction of composite properties would bypass expensive and time-
consuming manufacturé and test procedures.

The so-called homogenization procedure is used to predict the macroscopic properties
of the composite from the properties of the individual constituents.

The composite under consideration is composed of a hexagonal array of SCS6 fibers
coated with the interface layer, in a Tiz Al mamix (Fig. 9). A hexagonal array presents more
symmetries then a square array. Takin-g into aécount the structure periodicity, the problem
can be reduced, for symmetric loadings, to the study of a single unit cell (ODBA), shown
in Fig. 9, with the appropriate boundary conditions, as detailed in Appendix B.

Resuls for the unit cell under thermal loading only will allow to appreciate the validity
of the 3 cylinder model used earlier. With the unit cell, it will be also pos;sible to study the
composite behavior under transverse mechanical loading since the 3 cylinder model is
clearly not adequate for non-axisymmetric problems. The study was conducted using
ABAQUS [14]. The F.E. mesh for the cell is shown in Fig. 7b.

The matrix and the interface layer are assumed to be elastic-perfectly plastic, while the

fiber remains elastic. The materials properties of the 3 materials are temperature dependent.

17



3.1 Monotonous Cooling

A monotonous uniform cooling (AT = -800°C) was applied to the unit cell. The
resulting values of stresses and strains were found to be almost identical to those obtained
for the 3 cylinder model, and presented in section 2.4. So, for axisymmetric problems, the

3 cylinder model seems 1o be a simple but accurate representagon.

3.2 First yield points in the matrix

Several proportional monotonously increasing thermal-mechanical loadings were
applied to the unit cell. The mechanical loading is an average stress I corresponding to a
macroscopic uniaxial stress state in the 1-direction (Z1; # 0, % = Oifi#lorj=1). The
inital temperature is Tg = 25°C, and two initial stress states were considered:

- no initial residual stresses,

- initial residual stresses due to a cooling down from

T; =825°Cto Tp =25°C
The points of first yield in the matrix for each case are reported in Fig. 10. The results

show that the residual stresses offer a reserve of elasticity to the matrix and the composite.

3.3 Shake down

Thermal cycling is applied to the composite under a constant macroscopic stress X
in thé |-direction. Shake down is obtained when the macroscopic strain keeps the same
value at the end of each cycle. Limit shake down points are reported in Fig. 10 .

In excess of the shake down limit values, the composite rachets on each cycle of
thermal loading. Inside the shake down region, the composite behaves elastically. The
results of Fig. 10 show that the particular interface layer (Ag) considered as an example in
this work does not extend the temperatufé réngc for shake down in the 'composite. The
reason is that the yiéld stress of this layer is too low. As pointed out in [4], to improve the

low cycle fatigue of the composite, it is desirable to have a layer with a high yield smess.

‘18



CONCLUSIONS
The optimization procedure proposed in [5] on the basis of an elastic study allows to

have good candidate layer materials. The elasto-plastic analysis conducted here confirms
that such interface layers can reduce the hoop stress and the v. Mises equivalent stress in
the matrix significantly. However, the éxial stress in the matrix is less affected by a layer
(and it may even increase). This implies that these layers could be successful in composites
where predominatly radial cracking is observed in the matrix. The interface layer should be
ductile enough to sustain relatively high strains. It should also have a yield stress high
enough to improve the range of shake down of the composite.

It appears that taking into account plasticity is much more important than Vthe
temperature dependence of the materials properties. Comparison between the results given
by the 3 cylinder model and a unit cell of a hexagonal array shows that for axisymmetric

problems the concentric cylinder is a simple but accurate model.
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APPENDIX A. Stresses in (f) and (m) and contributions of (f) and (m) to the incremental

stiffness matrix.
The fiber and the matrix being assumed here to be elastic, their strain and stress fields

are completely defined by the knowledge of 3 constants: cf, ¢y, Dy (see [5]).
The soludon in (f) is found by solving eqn. (3):

2
R R,
CfRf=°zRf+Dt§':=°°f=°z+ E[- D,
The radial and longitudinal stresses in (f) at r = R¢ are then:

ort.=2(lf+uf)cf+lfez-(3lf+2uf)afAT

G = 21fcf + ().f + Z“r)"’z - (3)\f + Zuf)afAT

The solution in (m) is found by solving eqn. (4) and (5):

2
R
. cmR(+E'i1Dm=ctRl+DlRl
2
Rn
= Co + R[ Dm=c[+Dt
. 2(lm+um)cm+lmez—2umDm-(3km+2um)amAT =0

That gives

_hge t2h +u e, +D)=GA +2p Ja AT

m

R 2
Zum + 2(?\m + um)(-—m-]
Rl
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R

RV
and °m=°t+Dt"(—T] D

Then, the radial and longitudinal stresses in (m) atr = R, are

2
R
— - —m —
o -Z(Am+;,xm)cm+?‘.mez Zum( R,J Dm (3lm+2um)amAT

O, =2A c + (lm +2u e, -(3)‘m +2p )a AT

Computation of [h¥]

The matrix [h*] contains the partial derivatives of the stresses Orf, Orm(Ry), Gf and

Ozm With respect to the components (cy, Dy and e;) of (e} (see Sections 1.1 and 1.2).
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APPENDIX B. Modelization and Finite Element Discretization

(a) Two and Three Cylinder Models

Because of the symmetry of the problem, \only a quarter of the cross section is
considered. The dimensions and the mesh used are shown in Fig. 7a. ABAQUS
generalized plane strain elements CGPE6 and CGPES5 were used, two extra nodes (EX1
and EX2) are needed to impose the generalized plane strain conditon. The node EX1 has
one degree of freedom (DOF) representing the longitudinal displacement which is the
increase in thickness of the model. The node EX2 takes care of the rotations of the end
planes, and these are prescribed to be zcro:

The normal displacements of the nodes of the 2 straight edges of the section in Fig.
7a are imposed to be zero. The two cylinder model (Vﬁbcr and matrix) is simply obtained by

saying that the layer material is identcal to the matrix one.

(b) Unir Cell

The composite is composed of a hexagonal array of SCS6 fibers coated with the
interface layer, in a Ti3Al matrix. The transverse section is given in Fig. 9. The following
approach considered in [15] was kept in this study.

Edge effects will not be considered in this study, and hence the analysis can be done
using the theory of homogenizadon. We consider symmetric loading such that the edges of
the unit cell as well as the axes 01 and 02, will remain straight during deformation. Hence
only a quarter of the unit cell need to be considered for analysis, and this is taken to be the
positive quadrant of the 01,2 axes.

[f this quarter cell (OFEA) is isolated and allowed to deform symmetrically,it will
undergo displacements as shown in Fig. 11a. The centerline DCB, about which the region
is skew-symmetric, will displace as shown. If (Cul, Cu2) are the displacements of C,
(Pul, Pu2) are the displacements of a point P on CB, and (Qul, Qu2) are the
displacements of a point Q on DC such that QC = CP, then:

25



Cul=Cu2=0,
Pul+Qul=0'3nd
Pu2 +Qu2=0

If this skew-symmetry is taken into account, only the half (ODBA) of the quarter cell
need to be analyzed. The deformed shape of (ODBA) is shown in Fig. 11b, after giving it
a rigid body translation so that points in the side OD do not undergo u2 displacements.

In analyzing the region (ODBA), the boundary conditions to be used are:

i. AlongOD, u2=0
ii. Along OA, ul = Aul
iii. Along BA, u2 = Au2
iv. Along DB, for points such as P and Q,
Pul +Qul =0
Pu2 + Qu2 = Au2

The finite element mesh used isr given in Fig. 7b. The type of elements is the same as
in section (a). |

With the boundary conditions given earlier, the key displacements of the F.E. model
are the rxrxilﬂ;cmd Lx2 displaccmc}its 6f thc nodc A and the u3 dis;;iacc;ér;t of the extra node
EXI. In teirmﬁs 6f these nodal dlsplace;ncnts,thc 'a\;érjag:c E(fﬁacroscdéié) direct strains in the

composite are given by:

_ _ul(A) _u2(A) _ u3(EXI)
=3 2T BT
~h ,

2
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Stresses in Matrix

Stress - 4y 66 z Mises Damage

G c*
Ref. oc(MPa) -187.3 4422 3720 597.5 602.5
0 oc(MPa) -50.4 1635 292.8 300.2 320.3
elastic O/Cref 0.27 037 079 0.50 0.53
€ oc(MPa)  -30.4 98.7 342.0 327.5 342.7
plastic O/Cref 0.16 0.22 0.92 0.55 0.57

Stresses in Layer

Stress ¢ 696 zZ Mises Damage
(&) elasic o (MPa) -260.1 1529.5  1437.1 1745.2 1901.7
({) plastic ¢ (MPa) -36.3 64.9 62.5 100.0 98.8

Stresses in Fiber

Stress T 86 z Mises Damage
Ref. 6 (MPa) -187.3 -187.3  -546.5 359.3 536.0
() elasic o (MPa) -260.1 -260.1  -780.5 520.4 763.8
(§) plasic ¢ (MPa) -43.6 -43.6 -417.8 374.2 406.6

Table 1. Stresses at the Inner Radii of the Compound Cylinder after Monotonous Cooling
(Materials properties given at room temperature)
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Strains in MATRIX

Strains T 00 z
Reference € (%) -1.45 -0.41 -0.52
() elastic € (%) -1.15 -0.80 -0.58
({) plastic € (%) -1.12 -0.90 -0.50

Thermal strains: amAT =-0.94%

Strains in LAYER
Strains T 60 z
() elastic € (%) -3.69 -0.41 -0.58
€ (%) -5.27 -0.38 -0.50
(¢) plastc
eP (%) 3.10 1.60 1.50

Thermal strains: apAT =-2.07%

Strains in FIBER

Strains T 60 z
Reference € (%) -0.41 -0.41 -0.53
(¢) elastic € (%) -0.41 -0.41 -0.58
(¢) plastc € (%) -0.38 -0.38 -0.50

Thermal strains: ofAT =-0.35%

Table 2. Strains at the Inner Radii of the Compound Cylinder after Monotonous Cooling
(Materials properties given at room temperature)
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Stresses in Matrix

Stress T 00 z Mises Damage

3 o
Reference o (MPa)  -130.8 261.7  235.4 380.0 3777
‘3cylinder o (MPa) -13.43 61.82 3350 317.5 329.3
model O/Cref 0.10 0.23 1.42 0.83 0.87

Suesses in Layer
Stress 44 690 z Mises Damage

3cylinder o (MPa) -1.40 08.13 99.07 100.0 117.4

Stesses in Fiber

Stress T 00 zZ Mises Damage
Reference o (MPa) -159.7 -159.7  -503.7 344.0 491.3
3cylinder o (MPa) -41.18 -41.18  -426.7 385.5 415.8
model O/Cref 0.26 0.26 0.85 1.12 0.84

Table 3. Stresses at the Inner Radii of the Compound Cylinder after Monotonous Cooling
(temperature dependence of materials properties taken into account)
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Strains in MATRIX

Strain (%)
Reference
3 cylinder
Strains in LAYER
Strain (%)
3 cylinder

Strains in FIBER

Strain (%)
Reference

3 cylinder

Table 4. Strains at the Inner Radii of the Compound Cylinder after Monotonous Cooling

-1.61
-1.08

-5.00

€
-0.405
-0.381

-0.437
-0.961

€0

-0.594

€00
-0.405

-0.381

-0.517
-0.506

-0.506

4
-0.517

-0.506

Accumnulated
plastic strain
0.34

0

Accumulated

plastc strain

2.94

(temperature dependence of materials propertes taken into account)
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Mises stress/Ref.Mises stress

Figure 1.—Concentric 3 cylinder model.
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Figure 2.—Influance of the layer thickness on the max Mises stress in the matrix.



Mises stress/Ref. Mises stress

plot plot _ plost.?
"IllllIﬁllll‘l']llll‘lli

layer”’

-
lllllJlllllllllLlJlIIll’lllllLlll

200 400 600 800 1000 1200 1400 1600
layer yield stress (MPa)

Figure 3.—Influence of the layer yleld stress on the max Mises stress in the matrix.
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Figure 4—Thermal cycling - history at the inner radius of the
matrix cylinder.
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Figure 6.—Temperature dependence of the materials properties -
Fiber: SiC(SCS6), Matrix: TizAl, Layer: Ag.
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Figure 7.—Finite element meshes.
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